Research Funded by the Deater Foundation

We​ ​are​ ​very​ ​pleased​ ​to​ ​provide​ ​this​ ​update​ ​on​ ​progress​ ​toward​ ​devising​ ​methods​ ​to silence​ ​the​ ​SPTLC1​ ​gene​ ​as​ ​a​ ​potential​ ​therapy​ ​for​ ​HSAN1.​ ​We​ ​have​ ​made​ ​progress in​ ​three​ ​areas.​ ​​ ​The​ ​key​ ​point​ ​is​ ​that​ ​we​ ​have​ ​now​ ​developed​ ​two​ ​types​ ​of​ ​reagents that​ ​can​ ​silence​ ​the​ ​SPTLC1​ ​gene.  
  
One​ ​type​ ​of​ ​reagent​ ​is​ ​composed​ ​of​ ​small​ ​strings​ ​of​ ​~​ ​20​ ​molecules​ ​of​ ​nucleic​ ​acids (antisense​ ​oligonucleotides​ ​or​ ​ASO’s)​ ​that​ ​have​ ​sequences​ ​complementary​ ​to​ ​specific sequences​ ​in​ ​the​ ​SPTLC1​ ​gene.​ ​​ ​The​ ​concept​ ​is​ ​that​ ​these​ ​ASO’s​ ​bind​ ​RNA​ ​from​ ​the​ ​target​ ​gene​ ​and thereby​ ​activate​ ​enzymes​ ​that​ ​break-up​ ​the​ ​RNA,​ ​preventing​ ​it​ ​from​ ​making​ ​protein.​ ​​ ​​ ​As​ ​we​ ​have reported​ ​before,​ ​we​ ​have​ ​been​ ​fortunate​ ​to​ ​have​ ​Havisha​ ​Karnam​ ​as​ ​a​ ​graduate​ ​student​ ​working​ ​in conjunction​ ​with​ ​Anastasia​ ​Khvorova​ ​Ph.D.​ ​on​ ​this​ ​project.​ ​​ ​Dr.​ ​Khvorova​ ​is​ ​an​ ​internationally recognized​ ​expert​ ​in​ ​the​ ​chemistry​ ​of​ ​ASO’s.​ ​​ ​With​ ​Dr.​ ​Khvorova’s​ ​guidance,​ ​Havisha​ ​has​ ​used​ ​two types​ ​of​ ​chemistry​ ​(designated​ ​LNA​ ​gapmers​ ​and​ ​hsiRNA)​ ​to​ ​generate​ ​ASO’s​ ​that​ ​can​ ​silence SPTLC1.​ ​​ ​In​ ​particular,​ ​she​ ​has​ ​developed​ ​ASO’s​ ​that​ ​specifically​ ​target​ ​hamster​ ​SPTLC1​ ​and​ ​not mouse,​ ​and​ ​reciprocally.​ ​​ ​She​ ​also​ ​now​ ​has​ ​ASO’s​ ​that​ ​target​ ​human​ ​SPTLC1.​ ​​ ​We​ ​need​ ​ASO’s​ ​that target​ ​hamster​ ​and​ ​not​ ​mouse​ ​because​ ​as​ ​you​ ​recall​ ​our​ ​mouse​ ​model​ ​of​ ​HSAN1​ ​has​ ​the​ ​HSAN1 mutations​ ​in​ ​a​ ​hamster​ ​transgene​ ​added​ ​to​ ​each​ ​cell​ ​above​ ​and​ ​beyond​ ​the​ ​normal​ ​mouse​ ​SPTLC1 gene.​ ​​ ​In​ ​our​ ​last​ ​report,​ ​Havisha​ ​had​ ​made​ ​good​ ​progress​ ​in​ ​developing​ ​these​ ​reagents.​ ​​ ​However, over​ ​the​ ​last​ ​four​ ​months​ ​she​ ​has​ ​obtained​ ​optimized​ ​reagents​ ​and,​ ​most​ ​recently,​ ​has​ ​shown​ ​she​ ​can use​ ​them​ ​to​ ​shut​ ​off​ ​the​ ​hamster​ ​SPTLC1​ ​gene​ ​(but​ ​as​ ​desired​ ​not​ ​the​ ​mouse​ ​gene)​ ​in​ ​neuronal cultures​ ​derived​ ​from​ ​the​ ​transgenic​ ​HSAN1​ ​mice.​ ​​ ​​ ​As​ ​a​ ​positive​ ​control,​ ​Havisha​ ​has​ ​also​ ​shown​ ​that she​ ​can​ ​silence​ ​other​ ​genes​ ​in​ ​the​ ​spinal​ ​cords​ ​of​ ​normal​ ​mice​ ​(such​ ​as​ ​the​ ​normal​ ​huntingtin​ ​gene). We​ ​are​ ​very​ ​excited​ ​with​ ​this​ ​development​ ​because​ ​this​ ​is​ ​an​ ​important​ ​step​ ​toward​ ​testing anti-SPTLC1​ ​ASO’S​ ​directly​ ​in​ ​the​ ​HSAN1​ ​mice.​ ​​ ​These​ ​ASO’s​ ​are​ ​intended​ ​to​ ​be​ ​given​ ​into​ ​the​ ​spinal fluid.​ ​​ ​In​ ​patients,​ ​this​ ​would​ ​likely​ ​require​ ​multiple​ ​doses​ ​each​ ​year​ ​via​ ​LP.
The​ ​second​ ​type​ ​of​ ​reagent​ ​we​ ​have​ ​developed​ ​are​ ​microRNAs​ ​(miRs),​ ​the​ ​elements​ ​we​ ​described​ ​to you​ ​in​ ​our​ ​proposal​ ​last​ ​fall.​ ​​ ​These​ ​are​ ​very​ ​much​ ​like​ ​ASO’s​ ​except​ ​that​ ​these​ ​small​ ​strings​ ​of​ ​nucleic acids​ ​are​ ​made​ ​up​ ​of​ ​RNA​ ​(while​ ​the​ ​ASO’s​ ​above​ ​are​ ​made​ ​of​ ​hybrids​ ​of​ ​RNA​ ​and​ ​DNA,​ ​with chemical​ ​modifications).​ ​​ ​The​ ​miRs​ ​have​ ​been​ ​developed​ ​in​ ​conjunction​ ​with​ ​Dr.​ ​Chris​ ​Mueller,​ ​Dr.​ ​Li​ ​Yi and​ ​another​ ​graduate​ ​student,​ ​Gabrielle​ ​Toro.​ ​​ ​For​ ​this​ ​project,​ ​they​ ​have​ ​developed​ ​some​ ​new​ ​assays (using​ ​a​ ​technique​ ​called​ ​digital​ ​PCR)​ ​to​ ​be​ ​able​ ​to​ ​quantify​ ​with​ ​precision​ ​the​ ​levels​ ​individually​ ​of mouse,​ ​hamster​ ​and​ ​human​ ​SPTLC1​ ​RNAs.​ ​​ ​In​ ​parallel​ ​they​ ​have​ ​also​ ​generated​ ​two​ ​miRs​ ​that​ ​target human​ ​SPTLC1​ ​and​ ​one​ ​that​ ​targets​ ​hamster​ ​SPTLC1.​ ​​ ​They​ ​have​ ​also​ ​taken​ ​two​ ​of​ ​the​ ​reagents developed​ ​by​ ​Havisha​ ​(above)​ ​to​ ​target​ ​the​ ​hamster​ ​SPTLC1​ ​and​ ​converted​ ​them​ ​from​ ​LNA​ ​gapmer and​ ​hsiRNA​ ​chemistries​ ​to​ ​make​ ​miRs.​ ​These​ ​new​ ​miRs​ ​against​ ​hamster​ ​and​ ​human​ ​have​ ​been devised​ ​in​ ​a​ ​form​ ​that​ ​let’s​ ​us​ ​put​ ​them​ ​into​ ​a​ ​virus​ ​commonly​ ​used​ ​by​ ​Chris​ ​Mueller,​ ​known​ ​as adeno-associated​ ​virus​ ​(AAV).​ ​​ ​(In​ ​fact,​ ​the​ ​head​ ​of​ ​the​ ​Gene​ ​Therapy​ ​Center​ ​at​ ​UMass​ ​patented scores​ ​of​ ​these​ ​AAVs).​ ​We​ ​and​ ​others​ ​have​ ​found​ ​that​ ​with​ ​two​ ​newer​ ​types​ ​of​ ​AAV​ ​(labeled​ ​AAV9​ ​and AAVrh10)​ ​one​ ​can​ ​get​ ​excellent​ ​penetration​ ​of​ ​AAV​ ​into​ ​the​ ​spinal​ ​cord​ ​and​ ​brain,​ ​and​ ​thereby​ ​have​ ​the cargo​ ​carried​ ​by​ ​AAV​ ​released​ ​into​ ​the​ ​interior​ ​of​ ​brain​ ​and​ ​spinal.  
Our​ ​goal​ ​in​ ​the​ ​next​ ​2-3​ ​months​ ​is​ ​to​ ​complete​ ​the​ ​process​ ​of​ ​packaging​ ​our​ ​new​ ​anti-SPTLC1​ ​miRs 
into​ ​the​ ​AAV​ ​and​ ​to​ ​use​ ​this​ ​system​ ​to​ ​treat​ ​our​ ​HSAN1​ ​mice.​ ​​ ​In​ ​the​ ​long​ ​term,​ ​one​ ​hopes​ ​that​ ​this​ ​will be​ ​a​ ​useful​ ​clinical​ ​strategy​ ​in​ ​people.​ ​​ ​A​ ​particular​ ​advantage​ ​of​ ​AAV​ ​is​ ​that​ ​when​ ​it​ ​delivers​ ​new​ ​genes or​ ​miRs​ ​to​ ​the​ ​brain​ ​and​ ​spinal​ ​cord​ ​tissues,​ ​it​ ​permits​ ​extremely​ ​long-term​ ​(many​ ​years)​ ​expression​ ​of the​ ​cargo​ ​gene​ ​or​ ​miR.​ ​​ ​This​ ​means​ ​that,​ ​by​ ​contrast​ ​with​ ​the​ ​ASO​ ​therapy​ ​above,​ ​this​ ​AAV-mediated delivery​ ​of​ ​the​ ​anti-SPTLC1​ ​miR​ ​could​ ​potentially​ ​result​ ​in​ ​years​ ​of​ ​treatment​ ​from​ ​a​ ​single​ ​injection.
 
Some​ ​describe​ ​this​ ​as​ ​“one​ ​and​ ​done”.​ ​​ ​A​ ​downside​ ​of​ ​this​ ​approach​ ​is​ ​that​ ​there​ ​is​ ​no​ ​way​ ​to​ ​retrieve the​ ​virus​ ​or​ ​turn​ ​off​ ​its​ ​cargo​ ​once​ ​it​ ​is​ ​delivered.​ ​​ ​These​ ​points​ ​not​ ​withstanding,​ ​our​ ​view​ ​is​ ​that​ ​this​ ​is a​ ​powerful​ ​therapeutic​ ​approach​ ​that​ ​warrants​ ​testing​ ​in​ ​any​ ​human​ ​disease​ ​in​ ​which​ ​a​ ​mutant​ ​gene​ ​is somehow​ ​adverse​ ​or​ ​toxic.  
  
On​ ​a​ ​third​ ​front,​ ​a​ ​post-doc​ ​in​ ​my​ ​lab​ ​is​ ​also​ ​working​ ​on​ ​aspects​ ​of​ ​HSAN1​ ​as​ ​one​ ​of​ ​two​ ​projects.​ ​​ ​Her goal​ ​is​ ​to​ ​get​ ​the​ ​assay​ ​for​ ​the​ ​deoxysphingoid​ ​bases​ ​(DSB)​ ​up​ ​and​ ​running​ ​here​ ​at​ ​UMass.​ ​​ ​We​ ​have been​ ​greatly​ ​assisted​ ​in​ ​this​ ​endeavor​ ​by​ ​Thorsten​ ​Hornemann​ ​who​ ​has​ ​provided​ ​protocols​ ​and​ ​details.  Importantly,​ ​our​ ​plan​ ​is​ ​to​ ​test​ ​some​ ​samples​ ​that​ ​he​ ​also​ ​tests,​ ​so​ ​that​ ​we​ ​can​ ​be​ ​assured​ ​that​ ​we​ ​are measuring​ ​DSB​ ​levels​ ​identically​ ​to​ ​his​ ​lab.​ ​​ ​Hirosha​ ​is​ ​a​ ​careful​ ​scientist​ ​who​ ​is​ ​well​ ​on​ ​the​ ​way​ ​to getting​ ​this​ ​method​ ​running.​ ​​ ​This​ ​will​ ​help​ ​us​ ​enormously​ ​as​ ​we​ ​do​ ​more​ ​testing​ ​of​ ​our​ ​silencing therapies​ ​in​ ​the​ ​HSAN1​ ​mice.  
  
On​ ​a​ ​parallel​ ​note,​ ​I​ ​want​ ​to​ ​mention​ ​that​ ​we​ ​have​ ​been​ ​extremely​ ​fortunate​ ​to​ ​have​ ​a​ ​very​ ​capable 
technician​ ​running​ ​our​ ​HSAN1​ ​mouse​ ​colony.​ ​​ ​It​ ​is​ ​robust​ ​in​ ​numbers,​ ​suggesting​ ​that​ ​we​ ​should​ ​be​ ​in an​ ​excellent​ ​position​ ​to​ ​test​ ​the​ ​above​ ​reagents.​ ​​ ​I​ ​anticipate​ ​that​ ​the​ ​mouse-based​ ​testing​ ​will​ ​begin​ ​in the​ ​next​ ​2-3​ ​months.  
  
On​ ​behalf​ ​of​ ​everyone​ ​here​ ​working​ ​on​ ​HSAN1,​ ​I​ ​want​ ​to​ ​offer​ ​my​ ​most​ ​sincere​ ​and​ ​heartfelt​ ​thanks​ ​for your​ ​support​ ​for​ ​our​ ​work.​ ​​ ​It​ ​has​ ​been​ ​quite​ ​consequential​ ​as​ ​we​ ​pursue​ ​the​ ​above​ ​two​ ​approaches​ ​to silencing​ ​the​ ​SPTLC1​ ​gene.​ ​​ ​Also,​ ​we​ ​want​ ​to​ ​thank​ ​you​ ​for​ ​once​ ​again​ ​sponsoring​ ​the​ ​HSAN1 conference​ ​in​ ​Cambridge​ ​this​ ​spring.​ ​​ ​As​ ​before,​ ​it​ ​was​ ​scientifically​ ​illuminating​ ​and​ ​ultimately​ ​very motivating.  
  
I​ ​look​ ​forward​ ​to​ ​remaining​ ​in​ ​close​ ​touch​ ​on​ ​all​ ​of​ ​these​ ​issues.  
Sincerely,
Dr. Robert H. Brown, MD, DPhil